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In this paper we investigate an algebraic semantics for a particular kind of 
Brouwer-Zadeh logic (BZL*). We prove that this semantics and the orthopair 
semantics (based on certainly-yes and certainly-no domains) characterize BZL*. 
Further, we prove that every BZ* lattice can be embedded into a complete BZ* 
lattice. 

INTRODUCTION 

Brouwer-Zadeh logic (BZL) is a kind of  quantum logic first investigated 
in Cattaneo and Nistic6 (1989) and in Giuntini (1990, 1991). In contrast to 
standard quantum logic (orthologic, orthomodular quantum logic), BZL 
has two kinds of  negation: a fuzzy-like negation and an intuitionistic-like 
negation. 

As is well known, standard quantum logic, created in the thirties by 
Birkhoff and yon Neumann, can be considered as a faithful abstraction of 
the structure of  all dosed subspaces (equivalently, projectors) of a Hilbert 
space. This structure is a complete orthomodular nondistributive lattice. 
The projectors of  a Hilbert space are interpreted, after Birkhoff and yon 
Neumann, as the properties pertaining to a quantum physical system. 

Recently, some objections against the identification of the properties of  
a quantum physical system with projectors have been put forward. In par- 
ticular, in the so-called operational approach to quantum mechanics, projec- 
tors are replaced by effects as the mathematical interpretation of the unsharp 
properties of  a physical system. Effects are bounded self-adjoint operators 
between the null and the identity operators. As proved by Cattaneo and 
Nistic6 (1989), the class of  all effects of a Hilbert space determines a 
Brouwer-Zadeh poset, i.e., a bounded poset with two kinds of negations 
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linked by a certain condition. Giuntini (1990) proved that any Brouwer- 
Zadeh poset can be embedded into a complete Brouwer-Zadeh lattice so 
that one can construct a logic based on Brouwer-Zadeh lattices. This logic 
can be considered as a relevant logical abstraction of an interesting algebraic 
structure arising from the operational approach to quantum mechanics 
(Giuntini, 1990). Giuntini (1991) proved that BZL can be equivalently char- 
acterized by means of an algebraic and a Kripkean semantics. 

Recently, a new semantics for Brouwer-Zadeh logic has been proposed 
by Cattaneo and Nistic6 (1989). Cattaneo et al. (1990) proved that such a 
semantics characterizes a logic which is stronger than BZL. We will call this 
logic BZL*. Cattaneo et al. (1990) proved a completeness theorem for BZL* 
with respect to this semantics. In this paper, we will show that BZL* can be 
equivalently characterized also by means of an algebraic semantics. 

1. BROUWER-ZADEH LATTICES 

A Brouwer-Zadeh lattice (BZ lattice) is a bounded lattice with two 
orthocomplementations linked by an interconnection rule. The first comple- 
ment represents a generalization of the usual orthocomplementation of fuzzy 
set theory, while the second one is a generalization of the intuitionistic 
complement. 

Definition 1.1. An involutive bounded poset (lattice) is a structure ~ =  
(e ,  < ,  • 0, 1) satisfying the following conditions: 

(i) (P, <,  0, 1) is a partially ordered set (poset) (lattice) with maxi- 
mum (1) and minimum (0). 

(ii) • is a l-ary operation on P (the fuzzy-like complement) which 
satisfies the following conditions Va, beP: 

a) a•177 
(b) If a<b, then b• <a I. 

Two elements a, b of an involutive bounded poset are said to be orthogonal 
(a • b) iff a < b • The sup and the inf of two elements a, b, when they exist, 
will be denoted by aUb and atqb, respectively. 

Definition 1.2. A regular involutive bounded poset (lattice) is an 
involutive bounded poset (lattice) ~ = ( P , _ < ,  •  satisfying the 
following condition: 

Va, beP: if ad_a and b_Lb, then aA_b 

(regularity condition) 
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Example 1.1. Let E (.~) be the set of  all effects of a complex Hilbert 
space whose inner product is ( . , . ) .  An effect is a bounded linear positive 
operator E on .~ such that Wpe,~: (E~p, q~) < II q'll 2. Then the structure t~(.~) = 
(E(.~), < ,  • 0, 1>, where: 

(i) VE, FeE( .~)  : E N F i f f  V~oel~: (Ecp, tp) < (Ftp, rp). 
(ii) 1 and 0 are the identity (1) and the null (8) operators, respectively. 

(iii) VFeE(.~):  F •  
is a regular involutive bounded poset which is not a lattice. 

Example 1.2. Let L :=  [0, 1] c R. Then the structure 

~(0,U = (L, < ,  • 1, 0 )  

where < is the natural order of R, 1 is 1, 0 is 0, and VaeL, a• l - a ,  is an 
involutive bounded lattice, where 

and 

afqb=Min({a, b}) 

a U b = Max({a, b} ) 

Definition 1.3. An involutive bounded lattice t~ = (L, _<, x, 1, 0> satis- 
fies the Kleeneproperty iff for any a, b e P, the following condition is satisfied: 

a t q a ' < b U b  • 

Lemma 1.1. An involutive bounded lattice is regular iff it satisfies the 
Kleene property. 

Definition 1.4. An orthoposet (ortholattice) is an involutive bounded 
poset ~ =  <P, _<, z, 1, 0> satisfying the following condition for any aeL: 

aFla• 

Lemma 1.2. Let ~ =  (P,  < ,  • 1, 0> be an involutive bounded poset. 
Then the following conditions are equivalent: 

(i) {aeP/aZa}  = {0). 
(ii) ~ is an orthoposet. 

Definition 1.5. An orthomodular latt&e is an ortholattice 

t~ = (L ,  <,  • 1, 0 )  

satisfying the following condition for any a, beL: 

arq(a• U(aFlb) ) <b 
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Definition 1.6. A Brouwer-Zadeh poset (BZ poset) (BZ lattice) is a 
structure ~ = (P,  < ,  • -, 1, 0)  which satisfies the following conditions: 

(i) <P, < ,  • 1, 0)  is a regular involutive bounded poset (lattice). 
(ii) - is a 1-ary operation on P (the intuition•177 complement) 

which satisfies the following conditions: 

(a) a < a - - .  

(b) If  a_< b, then b-  < a-.  
(c) a n a - = 0 .  

(iii) VaeP:  a - l = a  -~. 
(iv) 1 = O- = 0 k. 

Lemma 1.3. Let ~ =  (P,  < ,  • ~, 1, 0)  be a BZ poset. The following 
properties hold true: 

(i) a -  < a • 
(ii) I f a l  Ib exists in P, then a-r ib-  exists in P and (atdb)~=a~nb ~. 

Lemma 1.4. Let ~ = (P,  < ,  1, -, 1, 0)  be a BZ poset. Then the follow- 
ing conditions are equivalent: 

(i) a = a  ~ .  

(ii) a~=a I. 
(iii) a=a -• 
(iv) a=a • 

Lemma 1.5. Let ~ =  (P,  < ,  • ~, 1, 0)  be a BZ poset. Then the set 
Pc: = { a e e / a = a - - }  is nonempty since 0, lePe and moreover: 

(i) a-=a  • VaePe. The set Pe endowed with the restriction of  the 
partial order < defined on P is an orthoposet bounded by 0, 1, with respect 
to the orthocomplementation - :  Pe ~ Pc. 

(ii) If  ~li is a lattice, then Pe is dosed with respect to inf and sup and 
these are just the inf and sup in P. 

The elements of  Pe are called exact elements of ~ and the elements of  
P/Pe are called fuzzy elements of ~ .  

Definition 1.7. Let ~ = (P,  < ,  •  1, 0)  be a BZ poset (lattice). An 
element aeP is said to be a half element of ~ iff it satisfies the following 
conditions: 

(i) a < a • 
(ii) VbeP:  ifb_l_b, then b<a 
It is easy to see that if a BZ poset ha sa  half element, then this is unique. 

Such an element will be denoted by 112. 
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Example 1.3. The structure ~ (6 )  = <E0b), < ,  • 0, 1, 1/2>, where: 
(i) <E(.9), < ,  • 0, 1> is the involutive bounded poset of  Example 1.1. 

(ii) 1/2:= 1 / 2 . 1 =  1/2- 4. 
(iii) VFsE(.9) :  F-:=PKer(F), where Ker (F) :=  {tpe.9/Ftp=0_} (_0 is the 

origin vector) and PKor(F) is the projector o f -9  associated with the closed 
subspace of  -9 determined by Ker(F),  is a BZ poset with the half element. 

It should be noted that the set of all exact elements of ~(-9) coincides 
with the set of  all projectors of  -9. This set, as is well known, determines a 
complete orthomodular lattice. This example shows that even if a BZ poset 
is not a lattice, the orthoposet of  all exact elements can be a complete lattice. 

Example 1.4. The structure ~t0,1] = <L, < ,  • -, 1, 0, 1/2>, where 
(i) <L, < ,  z, 1, 0> is the involutive bounded lattice of  Example 1.2, 
(ii) 1/2:= 1 /2eR,  and (iii) VasL: 

- { ;  if a = 0  a := 
otherwise 

is a BZ lattice with the half element. 

Example 1.5. Let P(-9) be the class of  all projectors of  a Hilbert space 
and let P~/2(-9):= e(.~i) u { 1/2.  $ }. Then the structure 

~,/2(~)  = <P,/2(~), <_, ~, -, o, 1> 

where _< is the partial order of  ~(.~) (see Example 1.3) restricted to Pi/2(-~), 
and • and - are the operations of  if,(-9) restricted to P~/2(b), is a BZ lattice 
with the half element; further, 1/2. $~F=O and 1/2.  ~t3F=l,  for any 
nontrivial projector F. 

2. ALGEBRAIC SEMANTICS FOR BZL 

In this section, we will present an algebraic semantics for Brouwer- 
Zadeh logic (BZL) and a calculus for BZL. For the proofs of the results, 
see Giuntini (1991). 

The language of  BZL contains a countable s e t p ~ , . . . ,  p . . . . .  of senten- 
tial letters, two sentential letters $ (the falsity) and X (the indeterminacy), 
and three primitive connectives A (and), --7 ("fuzzy" not), and ~ ("intui- 
tionistic" not). We will use a, t , . . .  as metavariables ranging over formulas 
of  the language of  BZL. Disjunction (v)  is defined by the De Morgan law: 
a v fl :=--1 (-q a ^ -7 fl). A necessity operator (L) is defned as La := ~--q a. A 
possibility operator (M) is defined as Ma := ~,-~a. 

Definition 2.1. An algebraic realization for BZL is a pair 11= <~, v>, 
where ~ is a BZ lattice with the half element and v is a valuation-function 
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which associates with any formula a an element in L and satisfies the follow- 
ing conditions: 

(i) v(Z)=0.  
(ii) v(Z) = 1/2. 

(iii) 0(--7 a) = v(a) • 
(iv) v(~a)  = v(a)~. 
(v) v(a ^ b) = v(a) lqv(fl). 

Given a BZ lattice with the half element 9, by Val(9), we will denote 
the class of  all valuations into 9 and by R(BZL) the class of  all algebraic 
realizations for BZL. 

Definition 2.2. (i) A formula a is true in an algebraic realization 11= 
(9 ,  v)  (~ua )  iff v(a) = 1. 

(ii) A formula a is a logical truth of BZL (~BZL a)  iff ~H a for any 
I IeR(BZL).  

(iii) Let T be a set of  formulas. We say that a formula a is a logical 
consequence in BZL (T~ a)  iff for any (9 ,  v ) e R ( B Z L )  and for any aeL: if 
a<v(fl) ,  VfleT, then a<v(a) .  

A Kripke semantics for BZL was first proposed in Giuntini (1991). A 
characteristic feature of this semantics is the use of  Kripke frames with two 
accessibility relations. One can prove Giuntini (1991) that the algebraic and 
the Kripkean semantics characterize the same logic. BZL can be axiomat- 
ized: a soundness and a completeness theorem can be proved with respect 
to both semantics (Giuntini, 1991). 

Characteristic logical properties that fail and hold in BZL are the 
following: 

(a) The distributive principles, the noncontradiction, and the excluded 
middle principles break down for the fuzzy negation. 

(b) As in intuitionistic logic, we have 

~ ( a A ~ a ) ;  Jr a v ~ a ;  a ~ ~ ~ a ;  ~ a  g a ;  
BZL BZL BZL BZL 

--~,-~a ~ ~ a ;  i f a  ~ fl, t h e n ~ f l  ~ ,,~a 
BZL BZL BZL 

(C)  ~ , a  ~BZL - '7  a ; - 7  • VBZL ~ a  ; "-7 ~ a  ~BZL "~"~0~. 

(d) The modal operators give rise to Ss-like behavior: 

La ~ a; L ( a ^ f l )  ~ L a ^ L f l ;  L a ^ L f l  ~ L ( a ^ f l ) ;  
BZL BZL BZL 

M(a Aft) k Ma A Mfl; La ~ LLa;  Ma k LMa;  
BZL BZL BZL 

if ~ a,  then ~ La 
BZL BZL 
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3. A SEMANTICS WITH POSITIVE AND NEGATIVE 
CERTAINTY DOMAINS 

An alternative semantical description for a form of fuzzy intuitionistic 
logic was first proposed in Cattaneo and Nistic6 (1989). The intuitive idea 
underlying this semantics can be sketched as follows: one supposes that 
interpreting a language means essentially associating to any sentence two 
domains of certainty: the domain of situations where the sentence certainly 
holds, and the domain of situations where the sentence certainly does not 
hold. In contrast to the standard Kripkean semantics, the positive domain 
of a given sentence does not generally determine the negative domain of 
the same sentence. As a consequence, propositions are here identified with 
particular pairs of sets of worlds, rather than with particular sets of worlds 
as happens in the usual possible-world semantics. 

We first present the general construction to obtain BZ lattices of pairs 
from preclusivity frames (see Definition 3.1) and then we define the notion of 
realization with positive and negative certainty domains for a BZL language. 

Definition 3.1. A preclusioity frame (or orthoframe) is a pair ~ =  
(W, # ) ,  where W is a nonempty set and # is an irreflexive and symmetric 
relation on W. 

Given an orthoframe ~i = ( W, # ) ,  define for any A ~ W: 

A#: = {i~ W/i#j ,  Vj~A} 

Let P (~ ) :=  {A ~= W/A = A##}. We call P(~) the set of all simple propositions 
of the orthoframe ~. 

As is well known, the structure ~ ( ~ ) = ( P ( ~ ) ,  __., #, ~ ,  W) is a 
complete ortholattice with maximum (W), minimum (0), where, given any 
family {As} of simple propositions 

Inf({A;}) = ('] A , ,  and Sup({Ag}):= U A;= . A, 

Definition 3.2. Let i]i= (W, # )  be an orthoframe, X is aproposition of 
~i iffX = (A, B), where A, BeP(~) and A # B ,  i.e., A ___B #. 

By P # ( ~ ) ,  we will denote the class of all propositions of i]i. 

Definition 3.3. A proposition (A, B) is said to be exact iff B=A #. 

The following operations are defined on the set of all propositions: 
(i) The fuzzy complement: 

(n,  B) O = (B, A>. 
(ii) The intuitionistic complement: 

<A, ~>| = <B, B#>. 
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(iii) The propositional conjunction: 
(A, B)([~ ( C, D)= (A c~ C, BUD). 

(iv) The propositional disjunction: 
(A, B)Q(C,  D)=(ALIC, BnD).  

(v) The infinitary conjunction: 
O {(A,, B,)} = ( N  Ai, LI B,). 

(vi) The infinitary disjunction: 
@ {(A,, 8,)} = (LI A,, 0 B,). 

(vii) The necessity operator: 
[] ((A,B) )=(A,A#).  

(viii) The possibility operator: 
0 ((A, B ) ) = ( [ 3  ((A, B)(9))(9. 

(ix) The order relation: 
(A, B) <(C, D) iff A~= C and D~B. 

Then, one can easily prove the following theorem. 

Theorem 3.1 (Cattaneo and Nistic6, 1989). The structure 

~(i~)  = ($#(I~) ,  _<, (9, | (~,  w ) ,  ( w ,  ~ ) )  

is a BZ lattice with maximum (( W, t~ ) ) ,  minimum ((lZ[, W)), and the half 
element ( ( ~ ,  ~ ) )  which satisfies the following conditions: 

(i) ((A, B) • (C, D) )| = (A, B) | ~) (C, D)  | 
(ii) If (A, B)(9| D) and (A, B)~_(C, D) |174 then 

(A, B) _< (C, D) 

Let us again assume the BZL language. 

Definition 3.4. A realization with positive and negative certainty domains 
(briefly, orthopair realization or Cattaneo realization) is a system 9~= 
(W, # ,  A, o-), where: 

(i) ( IV, # )  is an orthoframe, A is a subset of the class of all proposi- 
tions of ( W, # ) ,  closed under (9, | (~, and ~ .  Further, A must contain 
the privileged propositions 0, 1/2 which satisfy the following conditions: 

o = <~ ,  w )  

for any (A, B)eA:  (A, B)O(A,  B)(9<1/2;  1/2<1/2 (9 
(It should be noticed that, in general, 1/2 does not coincide with ( ~ ,  ~ ) . )  

(ii) o- is a valuation-function which associates with any formula an 
element in A and satisfies the following conditions: 

(a) o(~) =0. 
(b) o-(x) = 1/2. 
(c) o-(a ^/~) = o-(a) ~ o-(/~). 
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(d) 0-(7 a) = o-(a) @. 
(e) c r (~a)=o ' (a )  | 

The other basic semantical definitions are as in the algebraic semantics 
for BZL. 

As a consequence of Theorem 3.1, one can immediately prove a sound- 
ness theorem with respect to orthopair semantics. Further, the proposi- 
tional lattice <A, <> is embedded into the complete lattice <P#(i~), <> 
of all possible propositions, and the embedding preserves the operations 
~3, @, o ,  | . 

One might guess that the orthopair semantics characterizes the same 
logic BZL. However, this conjecture has a negative answer, as the following 
theorem shows. 

Theorem 3.2. For any orthopair realization 9J1 = ( W, # ,  A, tr>, 

- ~ ( a  ^ f l )  v ( ~ ( a  ^ f l )  ^ ( ~ a  v ~fl))  

but 

g ~ ~ ( a  ^ fl) v (~(a A fl) A ( - a  v ~fl)) 
BZL 

Proof Let 9Jl= (IV, # ,  A, p)  be an orthopair realization and let 
or(a) = (A, B> and tr(fl) = (C, D>. Then tr(~.,,(a ^ fl)) = ((BUD) #, BUD> 
and tr(~(a ^ fl)) = (BU D, (BUD)#>. Further, 

r v ,..fl) = (BUD,  B # n D #> 

Therefore, 

cr(~~(a ^ f l )  v (~(a ^ f l )  ^ ( - a  v ~fl)))  

= ((BII D) #, B U D )  ~ ( (BUD,  B # n D#> ~ (BUD,  B# lqD#>)  

= ((BUD) #, BUD> ~ (BUD,  (BUD)#> 

=<w,~>=l 

Let us now consider the BZ lattice ~1/2(-~) with the half element of Example 
1.5. Let v be a valuation function in Val(~ln(~)) such that v(a) = P, where 
Pr  0, 1/2.4} and v( f l )=l l2  �9 4. Then v(,,~~(a Af l ) )=(Prq l l2"  ~)~-= 
0 -~=0  and v(~(a  A fl)) =~. Further, 

v(~a v , ~ f l ) = P - U ( 1 / 2 .  ~ ) - = P •  • 

Thus, 

V(~~(aAfl) V(~(aAfl)A(~av~fl)))=OU('~l"lP• #l �9 
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As a consequence, the orthopair semantics characterizes a logic which 
is stronger than BZL. We will call this logic BZL*. This logic can be axiomat- 
ized: a soundness and a completeness theorem can be proved with respect 
to the orthopair semantics (Cattaneo et al., 1990). 

4. A L G E B R A I C  S E M A N T I C S  F O R  B Z L *  

In this section, we show that BZL* can be characterized also by means 
of  algebraic semantics and we prove that there are some conditions which 
make a BZ lattice embeddable into the BZ lattice of all propositions of  an 
orthoframe. 

Definition 4.1. A BZ* lattice is a BZ lattice ~=(L ,  <,  •  0, 1) with 
the half element such that the following conditions are satisfied: 

(i) Va, beL: (afqb)-=a-Ub% 
(ii) Va, beL: if aX~_<b and a<b ~~, then a<_b. 

Lemma 4.1. The class of  all BZ* lattices is equational. 

Proof. We will show that (ii) is equivalent to the following equality: 

a[qb~~ <_a• (,) 

Suppose that (ii) holds. We want to show that (arqb~~)•177 and 
(a[qb--)<_(al-Ub) ~ .  Then, by (ii) we can conclude that ( , )  holds. 
(aiqb~~)•177 On the other hand, 

(a•177 

Conversely, suppose a• and a<b~% Then, by (*), 

a=aRb- -  <_a• �9 

We list, without proof, some properties of  a BZ* lattice ~: 
( ,1) VaeL:  a<_a • iff a• 
(,2) a<_a • iffa_<l/2. 
(*3) arqbZ~~<_ai-Ub x. 

Theorem 4.1. Conditions (i) and (ii) of  Definition 4.1 are independent. 

Proof. First, we prove that there exists a BZ lattice with the half 
element in which condition (i) holds and condition (ii) fails. Let ~[0.1j be 
the BZ lattice of  Example 1.4. Two cases are possible: (a) (a~b)~=l; 
(b) (aVlb)~ =0.  

(a) If (a r'l b)~ = 1, then 0 = a I"1b = M i n ( { a ,  b} ). Thus, either a = 0 or 
b = 0. In both cases, a~U b~= 1. 

(b) If(arqb)~=O, then afqb#O. Thus, both a # 0  and b~0 .  Therefore, 
a~=b~=O. Hence, a - U b ~ = 0 .  
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The equational condition equivalent to (ii) fails in 210,1]o Let a = 2 / 3  
and b = 1/3. Then 

al-qb~-= 2/3 Iql= 2/3 ~ 1/3 = 0 U  1/3=al~Ub 

Now, we can prove that there exists a BZ lattice with the half element 
where condition (ii) holds and condition (i) fails. Let us consider the BZ 
lattice ~u2(.~) of  Example 1.5. We want to show that VE, FePu2(~): 
ERF-~<EZ-UF. If  E, F are two projectors, then the proof is trivial. 
Thus, we can suppose that either E =  1 /2 .1  or F =  1 /2 .1 .  Suppose that 
E =  1 /2 .1 .  If  Fe  {1, 8, 1/2- 1 }, then the proof is trivial. Therefore, we can 
suppose that Fr  0, 1 /2 .1} .  Then EIqF~-=EtqF=O and we are done. 
The case in which F =  1/2. I is similar. 

We now prove that (EtqF)~~E-UF ~. Let Er 0, 1 /2 .1}  and let 
F = l / 2 . 1 .  Then (EI'-IF)~=I and E~=E• �9 

Definition 4.2. Let ~ be a BZ lattice. An L-filter of ~ is a filter F of 
which satisfies the following condition: 

VaeL: if aeF, then aZ~eF 

One can easily prove the following result. 

Lemma 4.2. Let ~ be a BZ lattice. The following properties hold: 
(i) [a •  and [a - - )  (the principal filters generated by a • and a~-) 

are L-filters. 
(ii) An L-filter F is proper iff VaeL: atqa• 

Theorem 4.2. Let ~ = (L, < ,  ", -, 0, 1) be a BZ lattice with the half 
element. Then the following conditions are equivalent. 

(i) ~ is embeddable into the BZ lattice of all propositions of a pre- 
clusivity frame. 

(ii) ~ is a BZ* lattice. 

Proof (i) implies (ii). It suffices to prove that the BZ lattice ~#(i~) 
of all possible propositions of an orthoframe lJ = (IF, # )  satisfies condi- 
tions (i) and (ii) of Definition 4.1. Conditions (i) and (ii) follow from 
Theorem 3.1. 

(ii) implies (i). Let Wbe the class of all proper L-filters. Given F, Ge W, 
define F # G  iff 3aeL such that aeF and aZeG. Clearly, # is symmetric 
and, by Lemma 4.2(ii), irreflexive. Therefore, the pair i~ = (W, # )  is an 
orthoframe. Let ~(lJ)  be the ortholattice of all simple propositions of ~ and 
let ~#( l J )  be the BZ lattice of all propositions of lJ. Let h be the map from 

into 2 w defined as follows: h(a)=  {Fe W/aeF}. We want to show that, 
for any aeL, h(a) is a simple proposition. If a = 0, then h(a)= tZI = ~ # # .  If 
a = l ,  then h(a) = W = W ##, Therefore, we can suppose a # 0  and a # l .  
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Suppose Fr h(a). We want to prove there exists a G e W such that not F #  G 
and Geh(a) #. Let us consider the filter G:= [a• By Lemma 4.2(i), G is 
an L-filter. G is proper since otherwise 1 = 0 - = a  •  impossible since 
a # l .  Thus, GeW. Now, we can prove that Geh(a) #. Suppose Heh(a). 
Then aeH and therefore a• since H is an L-filter. But a •177 a ~ e G .  
Thus, G # H .  It remains to prove that not F#G.  Suppose, by contradiction, 
that F#G.  Then there exists an element b such that a• and b• 
Then, a • eF;  hence, aeF, which contradicts the hypothesis F(Eh(a). There- 
fore, h( a) e P( itd ). 

I~t  us define the map k : L ~ P ( ~ ) x P ( ~ )  as follows: k(a) = 
(h(a), h(a• An easy computation shows that h(a)~h(a• #. Therefore, k 
maps ~ into ~ # ( ~ ) ,  the BZ lattice of all propositions of ~j. We want to 
show that k is an embedding of ~ into ~ # ( ~ ) .  

(a) k(a • =k(a)  O. We have 

k(a • = (h(a• h(a)) = k(a) 0 

(b) k( a~) = k( a) | By definition, k( a-) = ( h( a~), h( a~-) ) and k( a) | = 
(h(a•177 First, we prove that h(a-)=h(a• Now, h(a~)~h(a • 
since a~<_a • Suppose Feh(a• Then a-=al• since F is an L-filter. 
h(a--) c=h(a• #. Suppose Feh(a ~~) and Geh(a• We want to prove that 
F . #  G. By hypothesis, a--eF and a • e G. Then a ~~• = a~ = a •177 e F  since F 
is an L-filter. h(aZ)#~h(a~~). Suppose Feh(ai) #. Then F # G  for any 
L-filter G such that Geh(aZ). Let H:=[a~) .  If a - = 0 ,  then a ~ = l  so that 
Feh(a~~). Therefore, we can suppose a~#0 .  By Lemma 4.2, H is a proper 
L-filter. Now, a• since a~<_a • Then, by hypothesis, F # H .  Thus, 3beL 
such that b e F a n d  b• i.e., a~<_b • Therefore, b<_a~~; hence Feh(a-~). 

(c) k(alqb) =k(a)  r~k(b). By definition, 

and 

k(alqb) = (h(afqb), h(a -L Ub• 

k(a) 0 k(b) = (h(a) VIh(b), h(a • U h(b • 

It is easy to see that h(aFlb)=h(a)Flh(b). It remains to prove that 
h(aiUb•177177 We will prove that, in general, the following 
equality holds: 

h(a U b) = h(a) U h(b) (,) 

To prove ( , )  it suffices to show that 

VFe W(Feh(aUb) iff YGe W (if not F # G ,  

then there exists an H e  W such that 

not G # H  and Geh(a) or Geh(b))) 
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Suppose Feh(aUb). Then (aUb)• since F is an L-filter. Now, ~ is a 
BZ* lattice and therefore a• • (aUb)• Suppose, not F#G. We 
want to show that either a• or b• Suppose, by contradiction, 
that a• and bZ--eG. Then, (a•177177177 Then 
F #  G, contradiction. Suppose a"  ~~ ~ G. Then a • # 0. Thus, by Lemma 4.2, 
H :=  [a • is a proper L-filter. Moreover, Heh(a). It remains to prove that 
not H#G. Suppose, by contradiction, that H#G. Then 3ceL such that 
a •  < c and c • e G. Then a • e G, which contradicts the hypothesis. Suppose 
F~h(aUb). We want to show that there exists a proper L-filter G such that 
not F # G  and Vi le  W: if not H#G, then H~h(a) and Hq~h(b). 

By hypothesis, aUbCF. We want to show that (a • l ib• ~- #0 .  Suppose, 
by contradiction, that (a • l ib•  =0.  Then (aUb)  •  I eF. Then aUbeF, 
impossible. Thus, by Lemma 4.2(i), G:= [(a • l ib• ~~) is a proper L-filter. 
We want to show that not F#G. Suppose, on the contrary, that 3beL 
such that beF and (a• • Then, since ~ is a BZ* lattice, 
b _< (a • l ib  • = a • U b • ~. Thus, a U b e F, which contradicts the hypothesis. 
Suppose, now, not H#G. We want to prove that H(Eh(a) and H(~h(b). 
Suppose, by contradiction, aeH or bell. Suppose aeH (the case bell  is 
similar). Then a• since H is an L-filter. Since ~ is a BZ* lattice, 
a •  Iqb •  (a • l-'lbZ)~~e G. Then aZ~• G, so that G#H, contradiction. 
Thus, we have proved that k(a U b)= k(a) ~ k(b). 

By (a)-(c),  we can conclude that k is as homomorphism of ~ into 
~#(lJ). 

It remains to show that the map k is injective. 
First, we will prove that for any a, beL: if h(a)~h(b), then a• 

Suppose h(a)~h(b). We can suppose a •  Then, by Lemma 4.2, 
F :=  [a • is a proper L-filter such that Feh(a). By hypothesis, Feh(b), i.e., 
aZ-<_b. 

Suppose, now, that k(a)= k(b). Then h(a)= h(b) and h(a • = h(b• As 
previously shown, a• a~=a•177 • and b• b~<a • Thus, 
a• a<b ~~, and b• b<_a ~~. Since ~ is a BZ* lattice, we can con- 
elude, by condition (ii) of  Definition 4.1, a < b and b < a. �9 

The definition of algebraic realization for BZL* and the basic semantical 
definitions are as in the algebraic semantics for BZL. 

We can now prove that the algebraic semantics and the Cattaneo 
semantics characterize the same logic. 

By 
A 

T~a 

we mean that a is a logical consequence of  T according to the algebraic 
semantics. 
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By 
C 

T ~ a  

we mean that a is a logical consequence of T according to the orthopair 
semantics. 

Theorem 4.3 

A C 

T~ a iff T~ a 

The proof of Theorem 4.3 is a direct consequence of the following 
lemmas. 

Lemma 4.3. For any algebraic realization 11= (~,  v) for BZL*, there 
exists an orthopair realization 9J/u = ( W, # ,  A, or) such that 

T ~ a  iff T~  a 
u 

Lemma 4.4. For any orthopair realization 9JI=(W, # ,  A, or), there 
exists an algebraic realization 11 ~ =  (~,  o) for BZL* such that 

T ~  a iff T k  a 

Proof  o f  Lemma 4.3. Let 11= (~,  v) be an algebraic realization. 
Define W as the class of  all proper L-filters of ~ and ~ as in 

Theorem 4.2. 
By Theorem 4.2, we know that the BZ* lattice ~ is embeddable in the 

BZ* lattice ~#( lJ )  of all possible propositions of the preclusivity frame ~ = 
(I41, .~) .  Let k be such an embedding. Define A = {k(a) /a~L}  and tr(a) = 
k(v(a)) .  Then it is easy to check that the system 9)1 = ( I41, # ,  A, or) is a 
"good" orthopair realization. 

The proof of the fact that 

T ~ a  iff T ~  a 
11 ~1 u 

is a consequence of the fact that k is an embedding. �9 

Proof o f  Lemma 4.4. Let 9 J I = ( W , # , A ,  tr) be an orthopair 
realization. 

By Theorem 2.2, we know that A is a BZ* lattice. Define v(a) = or(a). 
Then (A, v) is an algebraic realization for BZL* such that 

T ~ a  iff T ~  a 
11 ~i u 



Semantic Alternatives in Brouwer-Zadeh Logics 1667 

Some interesting questions which can be investigated in connection with 
this logic are the following: 

(I) A Kripkean semantic characterization of BZL*. 
(2) Possible models of BZL* based on subsets of effects of a Hilbert 

space. 
(3) Finite model property and decidability for BZL*. 
(4) Orthomodular extensions of BZL*. �9 
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